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GAS EVOLUTION DYNAMICS IN GODUNOV-TYPE SCHEMES AND ANALYSIS OF

NUMERICAL SHOCK INSTABILITY *

KUN XU t

Abstract. In this paper we are going to study the gas evolution dynamics of the exact and approximate

Ricmann solvers, e.g., the Flux Vector Splitting (FVS) and the Flux Difference Splitting (FDS) schemes.

Since the FVS scheme and the Kinetic Flux Vector Splitting (KFVS) scheme have the same physical mech-

anism and similar flux function, based on the analysis of the discretized KFVS scheme the weakness and

advantage of the FVS scheme are clearly observed. The subtle dissipative mechanism of the Godunov method

in the 2D case is also analyzed, and the physical reason for shock instability, i.e., carbuncle phenomena and

odd-even decoupling, is presented.

Key words. Riemann solver, flux vector splitting, flux difference splitting, gas-kinetic scheme, shock

instability

Subject classification. Applied Numerical Mathcmatics

1. Introduction. In the past decades, tremendous progress has been made in the development of

numerical methods for compressible flow simulations. Most of them arc largely based on the upwinding

concepts, where the "appropriate" amount of numerical dissipation is implicitly included in the scheme to

make the smooth shock transition possible [22]. In an earlier paper, we have analyzed the projection dynamics

in the Godunov method in 1-D case [6, 31], where the implicit viscous term is qualitatively obtained. As a

continuous effort, in this paper we are going to analyze the dissipative mechanism in the gas evolution stage

and explain the possible shock instability.

There arc mainly two kinds of numerical flux functions derived from the inviscid Euler equations. The

first group is the FVS schcmes [24, 26], where the waves generated in the left and right hand side of a cell

interface move across the cell boundary freely, and the flux has the form Fj+I/2 = F+(Wj) + F-(Wj+I),

where Wj and Wj+I are the left and right states. For example, in the FVS scheme a positive flux function

from the left state F + (Wj) can move across the cell interface regardless of the existence of the right state

Wj+I. In other words, there is no any dynamical interactions between the left and right states in the FVS

schcmc. Since the flux formulation of the FVS schemes of Steger-Warming and van Leer has the same

property as that of the Kinetic Flux Vector Splitting (KFVS) scheme based on the collisionless Boltzmann

equation [8, 14], in this paper the gas evolution mechanism in the KFVS scheme will be analyzed, and

this analysis can be equally applied to the FVS schemes. People who are not familiar with kinetic schemes

can find some useful information in [29]. Since the form of the numerical dissipation in the FVS scheme is

consistent with the Navier-Stokes viscous terms, the robustness of the FVS schemes can be easily understood,

i.e., the absence of numerical shock instability. However, this advantage also brings the disadvantage for the
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FVS schemes in solving the physical Navier-Stokes equations, where the large numerical dissipation could

easily poison the physical viscous term.

On the other hand, the FDS schemes based on the exact or approximate Pdemann solvcrs, such as the

Godunov, Roe and Osher methods [6, 16, 21], account for the wave interactions in the gas evolution process.

Especially for the Godunov method, the exact solution of the Euler equations is used. The wave interaction

in the FDS scheme can be clearly observed in thc Roe's average I;Vj+I/2 between the left Wj and the right

states Wj+I. In the smooth flow region, there is basically no differences among the Godunov, Roe and Osher

schemes. For example, the above three schemes can precisely keep a shear layer in the 2D case once the

shear layer is aligned with the mesh. This fact is consistent with the exact solution of the Euler equations

Therefore, the FDS schemes can accurately capture the Navier-Stokes solutions in the resolved dissipative

boundary layer, where the physical viscous term will not be deteriorated from the numerical dissipation. But,

this advantage also becomes the direct reason for the shock instability, and the so-called odd-even decoupling

is always associated with the above three schemes [19, 12, 17, 7]. As analyzed in this paper, the artificial

dissipation of the Godunov method in the 2D case depends not only on the flow distributions, but also on

the mesh orientation, i.e., in which direction the Ricmann solver is applied. Consequently, the form of the

numerical dissipation in the FDS schemes is basically inconsistent with the Navier-Stokes viscous terms, and

the Godunov method could generate spurious solutions.

In this paper, Section 2 is about the physical analysis of the FVS scheme, and Section 3 is related to the

analysis of the Godunov method. At the same time, the mechanism for the shock instability is presented.

Section 4 gives rcasons for thc necessity of developing the hybrid scheme, which combines the advantages of

both the FVS and FDS methods. The last section is the conclusion and future perspective in the development

of numerical methods for compressible flow simulations.

2. Flux Vector Splitting Scheme. In this section, we are going to analyze and understand the

dynamics in the FVS schemes. The analysis of the KFVS scheme here can be equally applied to understand

the dissipative mechanism of the Stegcr-Warming and van Leer methods [24, 26].

The flux vector splitting is a technique for achieving upwind bias in numerical flux function, which is

a natural consequence of regarding a fluid as an ensemble of particles. Since particles can move forward or

backward, this automatically splits the fluxes of the mass, momentum and energy into forward and backward

fluxes through the cell interface, i.e.,

Fj+_/: = E+(w_) + F-(Wj+I),

where Wj represents the mass, momentum and cncrgy densities in the cell j. The equivalence between thc

above splitting mechanism and the collisionless Boltzmann equation was pointed out by Harten, Lax and van

Leer [8]. Numerically, it is observed that the flux formulation of the van Leer and Steger-Warming schemes is

almost identical to that of the KFVS scheme [14]. In order to clearly understand the dissipative mechanism

in the FVS schemes, the introduction and analysis of the KFVS scheme is necessary and helpful. A simple

derivation of the KFVS scheme can bc found in [30].

It is well-known that the Euler equations can be derived from the Boltzmann equation with the local

equilibrium distribution function. For an equilibrium state, f is equal to the Maxwellian distribution g, the

collision term Q(f, f) goes to zero automatically, i.e., Q(g, g) =_ O. So, in this case, the Boltzmann equation

in the 1-D case becomes

(2.1) f_ + uf= = o,



where f is the gas distribution function and u is the particle velocity in the _:-direction. Since there is

no collision term on the right hand side of the above equation, this equation is also called the collisionless

Boltzmann equation. The KFVS scheme is based on the above governing equation and uses the Maxwellian

distribution function inside each cell as the initial condition. The KFVS scheme was first derived by Pullin

and named the Equilibrium Flux Method (EFM) [20]. With the initial gas distribution function fo(x, 0) at

t = 0, the exact solution of the collisionless Boltzmann equation is

(2.2) f = fo(x - ut, t).

With the mass, momentum and energy distribution of a Riemann problem, two equilibrium states at

x < 0 and x > 0 can be constructed,

(2.3)
f0={ gl, x<0

gr, X ]> 0

= gt(1 - H(x)) + 9rH(x),

where H(x) is the Hcavisidc function. In thc 1-D case, thc equilibrium state g has the form

KWI 2 2

(2.4) 9 = p(__)--i-e-a((, u) +_ ),

where the parameters (p, U, A) are related to the macroscopic mass, momentum and energy densities (p, pU, pc)

through the relation

K+I p
(2.5) p=p, U=U, :,-

4 pe- ½PU 2"

The parameter K is the dimension of internal variable _ which is a function of the specific heat ratio "y [29],

and d = + +... +

With the initial condition in Eq.(2.3), the exact solution of the collisionless Boltzmann equation is

(2.6) f(x,t) = fo(x- ut) = gt(1 - H(x- ut)) + 9rH(x - ut).

Since t > 0, the above equation can be reformulated as

(2.7)
X __ U)f(x,t) = gl(1- H( -u))+g_H(_

X

= f(_-),

which is a similarity solution. Based on the solution f(x, t), at a fixed time t we can get the mass, momentum

and energy distributions in space,

/(2.8) pU(x, t) = f(x, t)¢=dud_,

p,(x, t)

where d_ = d_ld_2...d_K and

(2.9) (1)1 2 + d)



For example, for the following initial condition

(1.0,0.0, 1.0), x < 0(2.10) (p,U,p) = (0.1,0.0,0.1), z > 0 '

the density distribution at fixed time t is shown in Fig.(5.1), where the collisionless Boltzmann solution

provides a smooth transition between left and right states. In comparison with the Euler solution, it can

be clearly seen that the governing equation (2.1) of the KFVS scheme must describe the dissipative flow

motion instcad of the inviscid Eulcr solution. For the KFVS scheme, the solution f(x, t) at x = 0 is used to

calculate the fluxes across a cell interface,

(2.11) For = f ÷ (Wj) + F-(Wj÷_) = _g_a_a( + _¢_g_a_a_.
>0 <0

Foe j+l/2

It is true that if thc flow remains in a local equilibrium state, Eq.(2.1) is the correct description of the

inviscid Euter equations. However, even with initial equilibrium states on both sides of a cell interface, the

collisionless Boltzmann equation cannot keep the equilibrium state at time t ¢ 0. For example, thc exact

solution f(x, t) (2.6) is not an equilibrium single Maxwellian at all. Physically, the mechanism for bringing

the distribution function close to the equilibrium state is the collisions suffered by the molecules of the gas,

the so-called collision term in the Boltzmann equation.

In the above analysis, we have only presented the gas evolution model for the KFVS scheme. In order

to understand the whole numerical solution, we have to include the dynamics from the projection stage too.

Physically, the projection stage is mainly to use the total mass, momentum and energy inside each cell to

reconstruct an equilibrium state, which is equivalently to introduce particle collisions in the gas system to

make the transition from the non-equilibrium state f(x, t) to an equilibrium state g possible. Therefore, the

projection mechanism can be precisely described by the following equation

(2.12) Of
O---t= Q(f ' f)'

where stiff collision term Q(f, f) make the transition from f to g instantaneously.

Combining the gas evolution model (2.1) and the projection model (2.12), the real governing equation

of the KFVS scheme can be physically described as the modified "BGK" equation [1],

(2.13) Of Of g - f
O--t+u-_z - At'

where the real particle collision time 7- in the BGK model is replaced by the numerical time step At. In should

be emphasized again that the above equation can be equally applied to understand the Steger-Warming and

van Leer's FVS schemes. After Eq. (2.13) is obtained, all theoretical results related to the BGK model of the

approximate Boltzmann equation can be applied here [1]. For example, the modified BGK model have the

intrinsic viscosity coefficient rl and heat conductivity coefficient n,

(2.14) r/= pAt,

and

K+5k
(2.15) _ - pat,

2 m



wherep is the pressure, k the Boltzmann constant, and m the molecule mass. More importantly, even

though the magnitude of the viscosity and heat-conductivity coefficients are always proportional to thc time

step, the format of the numerical viscous terms from (2.13) are always consistent with those in the Navier-

Stokes equations. The artificial dissipation exists in both smooth and discontinuity flow regions, and it is

independent of the mesh-orientation. As a result, the FVS schemes totally avoid the carbuncle phenomena

and odd-even decoupling [7].

As analyzed in [29], the fact _7_ At cannot bc changcd by increasing thc order of the scheme, it is from

the free transport dynamics. Although the FVS schemes arc robust, the accuracy of the schemes is limited.

The large artificial dissipation in the FVS scheme could easily deteriorate the physical viscous term in the

Navier-Stokes flow calculations [13, 27, 11].

3. Flux Difference Splitting Scheme. The well-known FDS schemes include the Godunov, Roc and

Oshcr's methods. The analysis of the Godunov method in this section can also be applied to the Roe and

Oshcr schemes in the explanation of the shock instability.

3.1. The Godunov Gas Evolution Model. The Riemann problem is defined as an initial value

problem for the Euler equations. In the 1-D case, with the following initial condition at t -- 0,

(3.1) (p,U,p) = _ (pL,UL,PL), X __ 0,

t (pR, UR,pn), x > O,

the entropy-satisfying solutions are the following: the left state (PL, UL,PL) is connected to the right state

(PR, UR,PR) by a 1-shock or 1-rarefaction wave, a 2-contact discontinuity, and a 3-shock or a 3-rarefaction

wave. The 2-contact discontinuity separates two constant states (PI, U*, p*) and (Plz, U*, p*), so that (U, p)

are continuous across the contact discontinuity. For example, in Fig.(5.2), the 1-wave is a rarefaction and

the 3-wave a shock. There is standard technique to obtain the solutions around a contact discontinuity [25].

Basically, the Godunov method is closely following the solution of the inviscid Euler equations.

Once the solution of the Riemann problem is obtained, the flow variables at x = 0, i.e., (pl, U*,p*) in

Fig.(5.2), are used to construct fluxes. The Godunov method uses these fluxes across each cell interface to

update the flow variables. In order to understand the gas evolution model in the Godunov method, we have

to understand the underlying assumption in the process of evaluating the fluxes. For the Euler equations,

the corresponding fluxes arc obviously

(3.2) Fpu = pU 2 + p .

1 3 _.7_._UFp_ \ _pU + _-lP

For example, in Fig.(5.2), the fluxes at x = 0 can be written as (piU*,piU .2 +p*, _p1,J1rr.3 -]- _p*U*)T.

From the flow variables (p,U,p) to the above flux functions (Fp, Fpv,Fp_), it is implicitly assumed that

the gas is staying in an equilibrium state. In other words, whatever the real flow situations is, the state

(PI, U*, p*) at the cell interface always corresponds to a single Maxwellian distribution function g in the

Godunov method, even for the fluid inside a numerical shock layer, see Fig.(5.3). On the contrary, the

KFVS scheme uses two half Maxwcllians gl[_>o and grI_<0 in the flux evaluation (2.11).

As we know, the intermediate points in the numerical shock region have to be regarded as points inside

a shock structure, where the dissipative mechanism is crucially important to translate kinetic energy into

thermal energy and make the smooth shock transition. But, the gas evolution model of the Godunov method

inappropriately assigns the equilibrium state there at the cell interfaces. In the special case, if the shock



is locatcdexactlyat a cellinterface,theGodunovmethodcanpreciselycapturea thicklessshock,suchas
that shownin Fig.(5.4).Howevcr,if wc lookat theRiemannsolutionin this case,wecannotevenfind
anuniquestate(p,U, p) at the cell interface. So, in this case the Godunov method uses the continuous

flux function directly instead of constructing any equilibrium state, subsequently avoids mistakes. In the

gencral case, oncc the numerical shock covers a few grid points or the shock is unsteady, the weakness of the

Godunov method automatically appears. The ignorance of the dissipation in the gas evolution stage in the

discontinuous region is one of the disadvantages of the Godunov method. Fortunately, as analyzed in [31],

in the 1-D case thc projection stage provides the dissipation needed in the shock region for the Godunov

method to capture numerical shocks.

3.2. The Godunov Projection Dissipation In 2D Case. In the 2-D casc, for any shock wave

with upstream and downstream velocity (U1 (z, y), U2 (x, y)) and dcnsity distributions (Pl (x, y), p2(x, y)),

the dissipation provided in the projection stage inside any finite elemct AV is

(3.3) AEk = Ek - E,k,

where Ek is the total kinetic energy before the averaging, Ek is the kinetic energy after the averaging, and

the difference is the kinetic energy lost during the averaging process in that volume, which is translated into

the thermal ones. Suppose looked in the fi-direction there is a flow velocity difference inside a small element,

such as that shown in Fig.(5.5). For simplicity, the volumes occupied by (Pl, U1) and (P2, U2) are assumed

to be the same and equal to 1/2. From the conservations of the mass and momentum, we have

and

1

P = _(pl +p2)

1 U
pU= _(pl i+p2U2).

As a result, the kinetic energy before the averaging is

1
Ek = _(plU12 + p_U22),

With the above relations, the difference in the kinetic energy can bc obtained,

1 PiP2 (U1-U2) 2,
/kEk --4 Pl d-P2

where fiisthe directioninwhich thefluidvelocitydistributionsarc appeared to be Ul, U2. So,the projection

stage inthe Godunov method providesthe follwoingsubtle dissipation

(3.4) dissipation ,-, PlP2 (U1 - U2) 2.
PlP2

Again, fi is also the direction in which the Riemann solution is evaluated. For the 1-D flow, (Ui - U2) is on

the same direction as fi and thc dissipation is always being proportional to (U1 - U2) 2. So, in the 1-D case,

the velocity difference provides intrinsic dissipation to the Godunov method in the shock region. However, in

the 2-D case, the velocity distributions U1 and U2 depend on which direction you look at the flow, and the

and after the averaging



dissipationin theGodunovmethodis mesh-oriented.AsshowninFig.(5.6),forthesamefluid distribution
in the2-Dcase,i.e.,a normalshockin the_-direction,thevelocitydistribution(U1- U2),_is different
whenlookedin thedifferentdirectionsft. So,thedissipativetermin Eq.(3.4)isdirectionallydependent.
Therefore,theformof thedissipationprovidedin theprojectionstagein theGodunovmethodcannotbe
consistentwiththeNavier-Stokesdissipationat all. Asshownin thecase(b)ofFig.(5.6),for a 2-Dnormal
shockin the_-direction,thedissipationprovidedin thep-directionbecomes(U1- U2)9"" 0, becauseU1
andU2appearastheparallelflowsin that direction.

3.3. The Explanationof ShockInstability. Thedocumentedobservationsof theshockinstability
arescatteredinmanyliteratures.TheinfluentialpaperbyQuirkforthefirsttimesystematicallypresented
theobservationandanalysis[19].Afterthat, theexplanationofthisnumericalshockbehaviorhasattracted
muchattentions.A shortlistofreferencesincludes[4,7,12,17,29,23],andreferencestherein.

In orderto havetheshockinstability,suchasthecarbunclephenomenaor odd-evendecoupling,the
numericalfluidhasthefollowingproperties[19,12];
(1).Shockpropagatesandisalignedwith themesh.
(2). AspointedoutbyLiou[12],themassfluxducto a pressuredifferenceisnotzero,suchas D (p) _ 0 in

the dissipative term D = D(P)Ap + D(U)Au + D(p)Ap of the full flux function Fj+I/2 = ½(Fj + Fj+I) + D.

(3). It is observed that the shock instability first happens in the downstream region, sec Fig.(5) in Quirk's

paper [19], then amplifies rapidly to the whole shock region. The formation of the instability is independent

of the time step used in the calculation.

From the point (1), if the shock front is aligned with the mesh, the projection dissipation (3.4) can be

provided in the direction normal to the shock front only, such as in the i-direction in Fig.(5.6). There is

almost no projection dissipation provided in the direction along the shock front due to the equal velocity.

Now suppose that a stationary shock is staying in the i-direction. Inside the shock region, due to

numerical perturbations, it is possible that certain fluid clement will move from cross section SA to SB

through the streamline converging or diverging, such as that shown in Fig.(5.7). For this element, the

momentum conservation gives

(3.5) pSA + pU2SA + pdSA = (p + dp)(SA + dSA) + (p + dp)(U + dU)2(SA + dSA),

where SB = SA + d,-,CA, and the continuity equation d(pUSA) : 0 has

pUdSA + pSAdU + SAUdp = O.

Multiplying the above equation by U and Subtracting it from Eq.(3.5), we have

dp= -pUdU,

which means that the pressure change is always out of phase with the velocity change. From aerodynamic

theory for the qusi-one-dimcnsional flow, we then have

Case(l). For 0 < M < 1 (downstream side), an increase in velocity (positive dU) is associated with a

decrease in area (SA), and vice versa. Therefore, the velocity increases (pressure decreases) in a converging

streamline case and decreases (pressure increases) in a diverging streamline case.

Case(2). For M > 1 (upstream side), the velocity increases (pressure decreases) in diverging streamline case

and decreases (pressure increases) in the converging streamline case.

Once this kind of perturbation exist inside the numerical shock front, in the subsonic side (close to

downstream), an increase of velocity is associated to a decrease of pressure in the converging streamline case,



seeFig.(5.8).Physically,theshearviscositywill stronglytakeeffectto reducethevelocitydifferencesand
stablizethenumericalshockstructurein thissituation.However,numerically,followingtheinviscidEuler
solutionin the!)-direction(noprojectiondissipationprovidedin thisdirection)will giveadifferentanswer.
Theexact1-DRicmannsolverin the _)-dircctiondoesnotrecognizethe&-componentvelocitydifferences
dueto theinviscidnature.Theonlydynamicalinfluenceinvolvedin theRicmannsolverin thisdirectionis
thepressuredifference.Sincethefluidin thesurroundingcellshasa higherpressure,it will movetoward
thecenter.Asa consequence,thefluidin thecentralcellspassesthroughanevennarrowercrosssection,
andthefluid speedgetsevenhigherdueto theconvergingof streamlines.At thesametime,thepressure
in thecentralcellsisevenlower.So,theuseoftheexactRiemannsolverin theg-directioncouldonlyhelp
to amplifytheinitial perturbations,andthenumericalfluidwill speedupandpenetratetheshocklayerin
thesubsonicsidefirstto forminstability.Numerically,it doesobservedthat theinstabilityhappensfirst in
thedownstreamside[19].With theconvergingofstreamlines,thesizeof thecrosssectionbecomessmall
andwill reachthe cellsizeeventuallyto formthesaw-toothlikepatterns.In thesupersonicsideof the
numericalshockstructure,suchastheleft partof Fig.(5.7),in caseof theconvergingof streamlines,an
increasein velocitywill beassociatedwithanincreasein pressure.So,thecentralhighpressuregaswill
expandandstoptheconvergingof thestreamlines.Therefore,in theupstreamsideM > 1, the structure

is theoretically stable to small perturbations. However, once the perturbation in the subsonic region gets

amplified (saw-tooth like profile), the flow in the supersonic side can hardly match the downstream flow

variations. Then, the shock strength becomes different along the _-dircction. As a result, the different

shock propagating speed will eventually destroy the whole numerical shock structure. For the odd-even

decoupling case, the streamline can diverge or converge, and the instability happens in both cases. For the

carbuncle phenomena, the streamline after the normal shock in front of the cylinder basically diverges, So,

the formation of instability in this case can be more difficult than that in the odd-even dccoupling case. But,

physically the mechanism of the shock instability is basically the same. The above analysis also validates the

numerical observation that the shock instability does not happen in the flow calculation with the unstructure

mesh, where the shock front can hardly be systematically aligned with the irregular mesh 1. In this case, the

projection dissipation exist all the time. Also, if the mesh is not aligned with the shock front, as shown in

the cases of (c) and (d) in Fig.(5.6), the projection dissipation is provided in both directions to eliminate

the shock instability.

The above explanation validates Liou's conjecture that T)(p) ¢ 0 is accompanied by an instability [12].

If :D(p) = 0, the initial pressure difference in the _)-direction will not push the fluid toward the central cells,

and no instability will be formed. Unfortunately, even for the exact Ricmann solver, :D(p) _ 0 always holds.

So, the shock instability is intrinsically rooted in the Godunov method if the inviscid Euler equations arc

considered as the governing equations in the numerical shock region in the g-direction. The above explanation

has no conflict with the stability of inviscid shock [10], where a discontinuity shock (without structure) is

perturbed and is stable. Here, in our analysis we are concerning with the mis-use of the governing equations

in the dissipative shock region and the reasons for the shock structure instability. For the FVS scheme, the

story is different. Once there is any perturbation in the velocity difference, the strong shear viscous term

will take effect and suppress the amplification of the instability.

For the shock instability case, Quirk used a saw-tooth initial condition to test the response from the

Roc's Riemann solver [19]. It was observed that the initial density perturbation goes to _o_ = _o/52 ' where

1Philosophically, the randomness of the unstructure mesh is more consistent with the homogeneous physical space (no

preferred direction) than the well-organized rectangular mesh, where the homogeneous physical space is systematically distorted.



fi is the localsoundspeed.At thesametime,the pressureperturbationgetsdecaying.Similaranalysis
wasalsogivenin [17].In theseanalysis,in orderto gettheshockinstability,aspointedoutby Quirk[19],
a systematicpressureperturbationisneededto amplifyt_°_. Then, the question is where the systematic

perturbation comes from. Actually, Quirk's analysis is only based on the solution of an initially saw-tooth

shear layer, it totally ignores the basic fact that the instability happens in the numerical shock region, where

the Z-direction fluid velocities change dramatically across the shock layer. Therefore, the shear instability

analysis can hardly explain the shock instability.

In conclusion, the odd-even decoupling and the carbunclc phenomena arc duc to the numerical dis-

cretization of the inviscid Eulcr equations in the shock region and the special dissipative mechanism of the

Godunov method in the projection stage. Condition (1) is necessary to have this kind of phenomena to take

place. In order to stabilize the shock front in _)-direction, a direct way is to add dissipation through entropy

fix, such as to solve the viscous shear layer equation. However, as realized by Quirk[19], the entropy fix here

is added to the linear wave rather than the nonlinear ones. So, it is more precisely to say that wc need to

solvc viscous governing equations once the "appropriate" dissipation from the upwinding is not enough.

4. The Necessity of Hybrid Scheme. As analyzed in the previous sections, the dissitmtivr mecha-

nism in the FVS and FDS schemes are different. Duc to the frec transport in the gas cvolutioa st ag, and the

projection dissipation, the FVS scheme is basically solving the Navier-Stokes-type equation._ and th,. di._._ipa-

tion is present in both the smooth and discontinuity flow regions. Consequently, the viscou._ t,.rm- hrlp the

FVS scheme avoid any shock instability. On the contrary, for the Godunov method, since thr ,'x,,'_ mvi._cid

Euler solution is used in the gas evolution stage, the dissipation is mainly contributcd from the' pr,0,'ction

stage. However, the projection dissipation is not only a function of flow variations, but al,_c_ _l [uI,,'tion of

mesh orientation. This fact makes the numerical dissipation of the Godunov method be inconsi._ cn_ wi_ h the

Navicr-Stokes terms. In other words, the dissipation strongly depend on the direction in which thr Ricmann

solver is applied. For example, even inside the numerical shock region, if the mesh is aligned with the shock

front, in the direction along the shock front the Godunov method interprets the dissipativc shock layer as

an inviscid shear layer. As a result, the shock instability emerges.

In order to construct a scheme with both robustness and accuracy, a recent trend in the development of

upwind schemes has centered around the construction of hybrid flux-splitting formulations which combine

the accuracy of the FDS approach in the resolution of shear layer and the robustness of the FVS method in

the capturing of strong discontinuity [3, 4, 11, 13, 15, 2, 9]. For example, starting from the FVS scheme, in

order to reduce the free penetration mechanism, the correlation and collision betwecn left and right moving

waves have to be introduced. The constructions of the values M1/2, U1/2 at a cell interface in AUSM-type

schemes arc largely based on this physical consideration[ll, 12]. Moschetta and Pullin [15] tried to use

Oshcr's numerical flux to replace linearly degenerate wave in the KFVS scheme. Unfortunately, this fix

introduces the shock instability [7]. This fact validates our analysis in the last section again. From the FDS

scheme, in order to eliminate the shock instability, a direct remedy is to introduce additional viscous term.

As a routine practice, additional dissipation had been introduced to stabilize discontinuous solution in the

early development of high resolution scheme [28]. The dynamical effect of using two waves instead of three

waves in the HLL scheme is basically to smear some waves and introduces dissipations in the gas evolution

stage [8]. The same philosophy is used in Marquina's flux function [3], where Steger and Warming's FVS flux

is modified. A good hybrid scheme depends on a smart weight function to identify where the flow is smooth

or where the flow is discontinuous. The weakness for these hybrid methods is that they are not based on

any rigorous governing equations, rather than ad hoc fixes whencver unsatisfactory solution appears. Also,



nouniformcriteriahaveeverbeenestablishedsofarfor theoptimumchoice[19].Numerically,astested
by GrcssierandMoschetta[7],almostnohybridschemes[12,2, 15]couldreallyremovethepathological
behaviorofupwindschemesintherefiningmeshstudyif theschemedoesnotusetheFVS-typchomogeneous
dissipativeterm.

Besidestheaboveapproaches,in thegasevolutionstagethegaskineticBGKschemeis basedon the
collisionalBoltzmannequation[29,32],

0_f+ o/_g-f
cOt cOx _- '

where the viscosity and heat conductivity coefficients in the BGK scheme are related to the particle collision

time r, instead of the time step At in the KFVS method. So, in the smooth region, accurate Navicr-Stokes

solutions can be obtained by the BGK method by appropriately choosing the collision time v according to the

physical viscosity coefficient [29]. For the Eulcr solution, the small but non-zero T provides a homogeneous

background dissipation, which subsequently avoids the shock instability. The resolution of the BGK solution

is as good as those from the best FDS method. In the discontinuity region, the BGK method uses large

artificial particle collision time T _ At, the numerical dissipation is obtained to construct a stable shock

structure, such as the KFVS scheme. Therefore, the BGK method naturally provides a genuine nonlinear

combination of the FVS or FDS schemes [29]. Different from any attempt in the modification and mixing

of the FVS and FDS flux functions, the BGK method is based on the a real physical governing equation.

Whatever the value of the particle collision time is used, the format of the viscous terms is always consistent

with the Navier-Stokes equations. It is basically the direct reason for the robustness and accuracy of the

BGK method. Even though there is a "tunable" parameter T here, physically the fluid does need us to use

different governing equations in the smooth and discontinuity regions.

5. Conclusion. Quite often, the requirements for the robustness and accuracy in the design of a

numerical scheme are in conflict with each other: if a scheme is robust, it is unnecessarily diffusive; if a

scheme is accurate, it loses robustness. It is well-known that the inviscid Euler equations cannot give a

correct representation of fluid motion in the discontinuity flow region. In order to capture the discontinuity

solution appropriately, the explicit dissipation has to be added in the gas evolution stage. For the FVS

schemes, due to the free transport gas evolution model, the numerical viscous terms of the scheme arc

consistent with the Navier-Stokes equations and the dissipation appears in both smooth and discontinuity

regions. For the Godunov method, the numerical dissipation in the multidimensional case is mesh-oriented,

and it is not consistent with the Navier-Stokes equations. As a result, in the 2-D case, even inside the shock

layer, the numerical dissipation is reduced to the minimum level when the shock front is aligned with the

mesh, and the shock instability forms.

In order to develop more accurate and robust numerical schemes for the compressible flow simulation,

first we have to have a physically consistent governing equation. Specifically, we have to solve the viscous

governing equations directly in the discontinuity region. No perfect scheme, or the Riemann solver, will be

obtained if only the Euler equations are regarded as the governing equations. It is naive to believe that

numerics only could provide the "appropriate" and "consistent" physics once it is necessary. For the gas-

kinetic BGK scheme, we always solve the viscous governing equations and the dissipation is controlled by the

collision time. With the increasing of computer power and the continuing refinement of the numerical mesh

size, the numerical error will become less and less, and the consistency of the digital physics in the scheme

with the real physics will become more and more important, especially for the complicated flow calculations.
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